• <small id="ooo8o"><menu id="ooo8o"></menu></small>
    <sup id="ooo8o"><delect id="ooo8o"></delect></sup>
    <optgroup id="ooo8o"><del id="ooo8o"></del></optgroup>
  • <noscript id="ooo8o"><optgroup id="ooo8o"></optgroup></noscript>
  • 蜜臀久久精精品久久久久久噜噜,中文字幕亚洲在线观看,成人av中文字幕在线播放 ,印度AV在线观看,曰韩中文字幕,亚洲最大免费色情网,摸一摸网站给我搜出来,亚洲欧美日韩三区

    激光沉積制造(LDM)Ti65鈦合金寬溫度范圍力學(xué)性能全景研究:剖析水平與豎直取樣方向的各向異性,揭示溫度升高致強(qiáng)度遞減、塑性遞增的規(guī)律,闡明室溫脆性/準(zhǔn)解理斷裂向高溫韌性斷裂轉(zhuǎn)變及α相球化的核心機(jī)制

    發(fā)布時(shí)間: 2025-11-02 20:20:20    瀏覽次數(shù):

    Ti65鈦合金是一種近α型高溫鈦合金,名義成分為Ti-5.8Al-4.0Sn-3.5Zr-0.5Mo-0.4Si-0.3Nb-2.0Ta-0.8W-0.06C,具有低密度、高比強(qiáng)度、耐高溫等優(yōu)異的綜合性能,被廣泛用于制造航空發(fā)動(dòng)機(jī)轉(zhuǎn)子、葉片及關(guān)鍵高溫結(jié)構(gòu)部件等[1-2]。傳統(tǒng)成形鈦合金的方法主要為鑄造/鍛造+機(jī)械加工,存在成形精度有限、生產(chǎn)周期長(zhǎng)且制造成本高等問(wèn)題[3],無(wú)法滿足發(fā)動(dòng)機(jī)整體葉盤(pán)尺寸增大和結(jié)構(gòu)復(fù)雜程度提高的要求。激光沉積制造(Laser Deposition Manufacturing,LDM)技術(shù)是一種基于“數(shù)字化三維模型+降維制造”的快速成形技術(shù),能夠?qū)崿F(xiàn)具有復(fù)雜曲面特征零部件的一體化快速成形,具有生產(chǎn)周期短、材料利用率高等優(yōu)點(diǎn),已被廣泛用于制造航空用鈦、鋁合金材質(zhì)的高溫零部件[4-5]。

    目前,國(guó)內(nèi)學(xué)者對(duì)Ti65鈦合金的性能研究主要集中在板/棒材、鍛件等,僅有少量文獻(xiàn)對(duì)激光沉積Ti65鈦合金工藝參數(shù)進(jìn)行報(bào)道。YUE等[6]研究了固溶處理后冷卻速率對(duì)Ti65棒材拉伸性能的影響,結(jié)果表明水淬組織的強(qiáng)度和塑性均優(yōu)于空冷組織,且隨著溫度的提高,水淬組織的強(qiáng)度和塑性均比空冷組織顯著提高。吳汐玥等[7]對(duì)不同熱處理制度下Ti65板材的織構(gòu)及力學(xué)性能進(jìn)行研究,結(jié)果表明影響板材力學(xué)性能各向異性的主要因素是織構(gòu),室溫下板材內(nèi)的位錯(cuò)和亞結(jié)構(gòu)能夠提高板材的抗拉強(qiáng)度和屈服強(qiáng)度,而高溫條件下拉伸強(qiáng)度取決于織構(gòu)類型及微觀組織。謝洪志等[8]對(duì)Ti65板材進(jìn)行740~840℃拉伸試驗(yàn),結(jié)果表明溫度增加和應(yīng)變率降低能減小Ti65鈦合金變形抗力。HE等[1]研究了不同激光功率下LDM Ti65合金的缺陷、微觀結(jié)構(gòu)和力學(xué)性能,結(jié)果表明高功率樣品具有優(yōu)良的內(nèi)部組織及力學(xué)性能。李曉丹等[9]研究了LDM Ti65鈦合金沉積態(tài)與退火態(tài)試樣在不同截面的顯微組織及力學(xué)性能,結(jié)果表明退火后顯微組織由片層組織變?yōu)榫W(wǎng)籃組織,不同截面力學(xué)性能的各向異性被弱化。LI等[10]研究了LDM Ti65合金在不同熱處理制度下樣品的微觀結(jié)構(gòu)和力學(xué)性能,結(jié)果表明沉積態(tài)組織為片層組織,退火后的微觀組織轉(zhuǎn)變?yōu)榫W(wǎng)籃組織,抗拉強(qiáng)度和塑性顯著提高。

    隨著對(duì)航空發(fā)動(dòng)機(jī)等熱端構(gòu)件性能要求的提高,鈦合金多溫度下的拉伸性能開(kāi)始引起各國(guó)學(xué)者的關(guān)注。沈淑馨等[11]通過(guò)激光增材制造技術(shù)制備了三種典型的雙相鈦合金,對(duì)室溫及中溫條件下三種顯微組織鈦合金的力學(xué)性能進(jìn)行探究。PAGHANDEH等[12]對(duì)三種不同初始顯微組織的Ti-6Al-4V合金分別進(jìn)行了室溫、400、500及600℃下的拉伸試驗(yàn),對(duì)不同顯微組織在不同溫度下的拉伸行為進(jìn)行描述。但是目前關(guān)于激光沉積Ti65鈦合金寬溫度范圍的力學(xué)性能尚未有學(xué)者對(duì)其進(jìn)行研究。基于此,本文采用激光沉積制造技術(shù)制備了Ti65鈦合金,對(duì)不同取向的標(biāo)準(zhǔn)試樣進(jìn)行室溫及高溫拉伸試驗(yàn),并結(jié)合顯微組織、實(shí)驗(yàn)數(shù)據(jù)及斷口形貌,分析取樣方向?qū)κ覝丶案邷亓W(xué)性能的影響規(guī)律,為激光沉積Ti65鈦合金在寬溫度范圍內(nèi)的力學(xué)性能提供科學(xué)依據(jù)。

    1、試驗(yàn)材料與方法

    采用超聲氣霧化法制備的球狀Ti65粉末,粉末粒度為80~200μm,化學(xué)成分見(jiàn)表1。試驗(yàn)在YLS-6000光纖激光器上進(jìn)行,工作模式為連續(xù)波,具體工藝參數(shù)見(jiàn)表2。為保證粉末良好的流動(dòng)性,試驗(yàn)前需對(duì)Ti65粉末進(jìn)行真空烘干處理。沉積制造過(guò)程中為防止Ti65樣品被氧化,采用純氬氣作為送粉與保護(hù)氣體,沉積路徑采用沿X軸方向呈之字形掃描,沉積過(guò)程示意圖見(jiàn)圖1。為消除殘余應(yīng)力對(duì)拉伸性能的影響,完成沉積后對(duì)Ti65鈦合金毛坯(長(zhǎng)×寬×高=100mm×25mm×250mm)立即進(jìn)行950℃去應(yīng)力退火,保溫2h、空冷的熱處理。

    截圖20251105203556.png

    截圖20251105203614.png

    如圖1(b)所示,金相組織樣本在毛坯中間位置截取,拉伸試驗(yàn)件分別沿平行(Z)和垂直于(XOY)沉積方向取樣,標(biāo)準(zhǔn)拉伸試樣尺寸見(jiàn)圖1(c)。金相試樣用400~3 000目的水磨砂紙依次進(jìn)行研磨、拋光,用Kroll(HF∶HNO3∶H2O=1∶1∶50,體積百分?jǐn)?shù))試劑進(jìn)行腐蝕。使用GX51OLYMPUS光學(xué)顯微鏡(OM)和ΣIGMA掃描電子顯微鏡(SEM)對(duì)不同取向及試驗(yàn)溫度下的試樣進(jìn)行顯微組織、缺陷分布和斷口形貌觀察。室溫與高溫拉伸試驗(yàn)均在INSTORON 5982電子萬(wàn)能試驗(yàn)機(jī)上進(jìn)行,室溫拉伸時(shí),試驗(yàn)應(yīng)變速率為屈服前1.75×10-4s,屈服后1.75×10-3s;高溫拉伸時(shí),試驗(yàn)應(yīng)變速率為屈服前6.67×10-5s,屈服后6.67×10-4s。對(duì)于高溫拉伸試驗(yàn),使用高溫試驗(yàn)箱將試樣分別加熱至500、650、700℃,保溫10min后進(jìn)行拉伸測(cè)試。為減少試驗(yàn)誤差,每組拉伸試驗(yàn)測(cè)試三個(gè)平行試樣,結(jié)果取平均值。

    2、結(jié)果與分析

    2.1 顯微組織分析

    圖2為激光沉積Ti65合金不同取樣方向的顯微組織。從圖2(a)可見(jiàn),XOY平面分布著多個(gè)大小不同、形狀不規(guī)則的等軸晶,微觀組織為典型的網(wǎng)籃組織,晶粒內(nèi)部分布著大量交錯(cuò)排列的條狀α相和β轉(zhuǎn)變相,部分片層α相呈細(xì)長(zhǎng)狀,晶界處分布著位向相同、相互平行的片層α相,如圖2(b)所示。通過(guò)Image J軟件定量分析條狀α相的尺寸可知,晶內(nèi)α相寬度均在2.25μm左右,長(zhǎng)度大部分集中在10~29μm,部分長(zhǎng)度達(dá)到45~52μm,晶界α相寬度為1.78μm左右,長(zhǎng)度為10~21μm。同時(shí)可以發(fā)現(xiàn)細(xì)長(zhǎng)的α相間分布著短棒狀的α相,這是因?yàn)樵诩す獬练e過(guò)程中α相會(huì)在晶內(nèi)或晶界形核長(zhǎng)大,當(dāng)不同生長(zhǎng)方向的α相互相接觸后就會(huì)停止生長(zhǎng),導(dǎo)致生長(zhǎng)速度較快的α相呈長(zhǎng)條狀,而生長(zhǎng)速度緩慢的α相呈短棒狀。從圖2(c)可以看出,YOZ(Z向)截面的宏觀組織為具有明顯生長(zhǎng)方向的粗大β柱狀晶,柱狀晶寬度為100~210μm,柱狀晶長(zhǎng)軸與沉積方向夾角約為15°。這是由于激光沉積過(guò)程中,熔池產(chǎn)生的熱量會(huì)從溫度梯度較高的熔池底部向著基材方向輸出,隨著沉積層數(shù)的不斷增加,形成穿越多個(gè)沉積層的粗大的β柱狀晶。從微觀上可以看到原始β柱狀晶內(nèi)分布著大量片層狀α相,方向與β晶粒的晶界呈±45°角分布,如圖2(d)所示,對(duì)片層狀α相的尺寸進(jìn)行定量分析后,得出其平均長(zhǎng)度為1.3μm,長(zhǎng)度范圍為10~30μm,長(zhǎng)寬比約為14。

    未標(biāo)題-1.jpg

    圖3為水平拉伸試樣在高溫條件下均勻變形區(qū)和頸縮區(qū)的顯微組織。通過(guò)定量測(cè)量均勻變形區(qū)α相的尺寸(圖4)可知,隨著變形溫度的升高,條狀α相逐漸變短變粗,且發(fā)生球化現(xiàn)象,700℃時(shí)由于高溫軟化效應(yīng),導(dǎo)致片層狀α相在拉應(yīng)力的作用下發(fā)生細(xì)化,塑性增強(qiáng)。頸縮區(qū)相對(duì)于均勻變形區(qū),α相變形較大,且隨著變形溫度的升高,α相變形逐漸加劇。

    截圖20251105203726.png

    截圖20251105203742.png

    2.2 拉伸性能分析

    為了探究取樣方向?qū)DM Ti65鈦合金拉伸性能的影響,分別沿著水平方向和豎直方向取標(biāo)準(zhǔn)圓棒試樣進(jìn)行室溫及高溫拉伸試驗(yàn),拉伸性能參數(shù)見(jiàn)表3。

    截圖20251105203759.png

    圖5為不同取向拉伸試樣在不同溫度下的工程應(yīng)力-應(yīng)變曲線。由圖5可知,在所有溫度下的初始屈服階段,應(yīng)力均快速增大至屈服點(diǎn)。但隨著溫度升高,這些曲線的屈服應(yīng)力逐漸變小,可知其對(duì)溫度有較強(qiáng)的敏感性。在相對(duì)較低的溫度下(低于650℃),出現(xiàn)了明顯的硬化現(xiàn)象,而當(dāng)溫度到達(dá)700℃時(shí),初始變形階段在到達(dá)屈服點(diǎn)后呈現(xiàn)快速下降趨勢(shì),表現(xiàn)出明顯的高溫軟化效應(yīng)。

    截圖20251105203815.png

    圖6為沿不同方向取樣的Ti65合金試樣的拉伸性能隨環(huán)境溫度的變化。隨著溫度由室溫上升到700℃,豎直方向取樣拉伸試樣屈服強(qiáng)度由924MPa降到357.8MPa,抗拉強(qiáng)度由995.33MPa降到496MPa,而延伸率則由8.8%升高至29.27%。與室溫時(shí)相比,650℃的屈服強(qiáng)度及抗拉強(qiáng)度分別下降47.73%、40.92%,延伸率提高47.38%,這表明豎直方向試樣的屈服強(qiáng)度和延伸率對(duì)服役溫度較為敏感。水平方向試樣拉伸性能的變化趨勢(shì)與豎直方向試樣相似,屈服強(qiáng)度從室溫的944.3MPa降低至700℃時(shí)的388MPa,抗拉強(qiáng)度從室溫的1 029MPa降低至700℃時(shí)的545.7MPa,延伸率度從室溫的4%升高至700℃時(shí)的26.3%。與室溫相比,650℃時(shí)屈服強(qiáng)度及抗拉強(qiáng)度分別下降44.16%、36.41%,延伸率提高2.34倍。總體來(lái)說(shuō),隨著試驗(yàn)溫度的升高,拉伸試樣屈服強(qiáng)度和抗拉強(qiáng)度呈現(xiàn)逐漸遞減的趨勢(shì),而延伸率逐漸升高,因?yàn)楦邷厥乖觿?dòng)能增加,降低晶界和相界面對(duì)位錯(cuò)運(yùn)動(dòng)的阻礙能力,促使強(qiáng)度降低;同時(shí)高溫軟化效應(yīng)導(dǎo)致變形抗力減小,塑性增加。

    截圖20251105203834.png

    圖7為不同溫度下取樣方向?qū)煨阅艿挠绊懸?guī)律。隨著試驗(yàn)溫度的升高,豎直方向取樣和水平方向取樣的試件均呈現(xiàn)抗拉強(qiáng)度和屈服強(qiáng)度降低、而延伸率升高的現(xiàn)象,且水平方向試樣的強(qiáng)度均高于豎直方向試樣。這是因?yàn)榧す獬练eTi65鈦合金產(chǎn)生的β柱狀晶晶界近似平行于沉積方向,當(dāng)沿豎直方向拉伸時(shí),β柱狀晶的長(zhǎng)軸受力,力的作用方向沿著晶界方向,使得滑移容易開(kāi)動(dòng),塑性增強(qiáng):當(dāng)沿水平方向拉伸時(shí),β柱狀晶短軸受力,力的作用方向與晶界方向近似垂直,晶界對(duì)滑移運(yùn)動(dòng)形成了阻礙,同時(shí)水平方向等軸α晶界數(shù)量較多,使得變形抗力增加,故強(qiáng)度更高。所以豎直方向取樣的試件具有較好的塑性,水平方向取樣的試件強(qiáng)度更好[13-14]。

    未標(biāo)題-2.jpg

    2.3 斷裂模式分析

    斷口形貌客觀地展示了金屬材料斷裂的整個(gè)過(guò)程,是分析金屬材料斷裂機(jī)制及其影響因素的重要依據(jù)。不同拉伸溫度下激光沉積Ti65鈦合金的斷口形貌如圖8、9所示。

    未標(biāo)題-3.jpg

    未標(biāo)題-4.jpg

    圖8為水平方向取樣試驗(yàn)件在不同溫度下的拉伸斷口形貌圖。室溫拉伸試樣有輕微塑性變形,斷口表面粗糙,具有河流花樣,局部存在微裂紋,結(jié)合斷后延伸率小于5%,故其屬于典型的脆性斷裂。500℃拉伸試樣斷口表面起伏較大,無(wú)中心纖維區(qū),存在明顯裂紋,有一定數(shù)量的解離面和撕裂棱,局部存在微小韌窩。650℃拉伸試樣斷口邊緣存在剪切唇區(qū),表面無(wú)明顯纖維區(qū),存在少量微小裂紋,斷口邊緣存在些許未熔化顆粒,微觀形貌觀察到明顯的撕裂棱與解離臺(tái)階,韌窩數(shù)量多而淺。700℃拉伸試樣發(fā)生明顯塑性變形,斷口表面纖維區(qū)面積較小,局部存在微小孔洞,韌窩大而淺且分布均勻,因此水平方向試樣高溫條件下均為韌性斷裂。

    圖9為豎直方向取樣試驗(yàn)件在不同溫度下的拉伸斷口形貌圖。室溫下拉伸試樣無(wú)明顯塑性變形,斷口表面平整,呈銀灰色,無(wú)剪切唇,斷裂面垂直于正應(yīng)力方向,具有河流狀花樣特征,存在一定數(shù)量的裂紋與解理平面,為準(zhǔn)解理斷裂。500℃拉伸試樣斷口平面粗糙、較為平坦,斷口邊緣存在剪切唇區(qū),局部有氣孔及微裂紋,微觀形貌存在小而淺且數(shù)量較少的韌窩,同時(shí)也存在解理面及撕裂棱。650℃拉伸試樣斷口表面粗糙,有氣孔,纖維區(qū)占比較小,韌窩分布均勻,尺寸小。700℃拉伸試樣斷口呈典型的杯錐狀,斷口表面存在剪切唇區(qū)和放射區(qū),纖維區(qū)特征明顯,表面較為粗糙,韌窩均勻且致密,韌窩尺寸相比650℃明顯變大變深。因此,高溫條件下豎直方向試樣均為韌性斷裂。

    激光沉積Ti65鈦合金拉伸性能_周松_9.jpg

    為了研究拉伸過(guò)程中的裂紋擴(kuò)展行為,對(duì)各組拉伸試樣的斷口側(cè)表面進(jìn)行觀察,照片如圖10、11所示。由圖10可知,水平方向試樣和垂直方向試樣的斷裂形式均為穿晶斷裂,700℃時(shí)由于高溫變形嚴(yán)重導(dǎo)致晶界破碎,未發(fā)現(xiàn)連續(xù)的α/β相晶界。圖11為室溫及650℃拉伸試樣的斷裂路徑,可以看到當(dāng)裂紋擴(kuò)展方向與α/β相集束取向一致時(shí),α/β相界面的結(jié)合能較弱,裂紋沿著α/β相界面擴(kuò)展,當(dāng)裂紋遇到位向不同的α片層時(shí),由于α相的強(qiáng)度較高,裂紋前端難以穿過(guò)α片層,擴(kuò)展方向發(fā)生偏轉(zhuǎn),消耗更多能量[15-16]。

    激光沉積Ti65鈦合金拉伸性能_周松_10.jpg

    3、結(jié)論

    1)激光沉積制造Ti65合金水平方向試樣的宏觀形貌為多個(gè)大小不同、形狀不規(guī)則的等軸晶,豎直方向則為尺寸較大的β柱狀晶,二者微觀組織均為典型的網(wǎng)籃組織。

    2)激光沉積制造Ti65合金拉伸性能具有顯著的各向異性特征。水平方向成形試樣的抗拉強(qiáng)度及屈服強(qiáng)度高于豎直方向成形試樣,延伸率與之相反。主要原因在于水平方向晶界數(shù)量較豎直方向多,晶界有效阻礙滑移運(yùn)動(dòng)促使變形抗力增加,故水平方向成形試樣強(qiáng)度更高。

    3)合金試樣的屈服強(qiáng)度和抗拉強(qiáng)度隨溫度升高而逐漸降低。室溫下水平方向試樣為脆性斷裂,豎直方向試樣為準(zhǔn)解理斷裂,塑性較差;高溫條件下均為韌性斷裂,韌窩尺寸隨溫度升高逐漸變大,塑性隨之提高。主要原因在于高溫軟化效應(yīng)導(dǎo)致變形抗力減小,塑性增加。

    參考文獻(xiàn):

    [1] HE B,JUNFENG S,GUANG Y,et Al.Microstructureand mechanicAl properties of laser-deposited Ti65near-Alpha titanium Alloy[J].Applied Physics A,2022,128(9).DOI:10.1007/S00339-022-05955-6.

    [2] YUE K,LIU J,ZHANG H,et Al.Precipitates andAlloying elements distribution in nearαtitanium AlloyTi65[J].JournA(yù)l of MateriAls Science &TecHNOlogy,2020,36(1):91-96.

    [3] RUI F D,ZHU Q,YAN F,et Al.MechanicAl andelectrochemicAl corrosion properties of titanium bylaser melting deposition[J].Applied Physics A,2021,127(12).DOI:10.1007/S00339-021-05119-Y.

    [4] 李曉磊,袁崗,張可倫,等.激光金屬沉積γ-TiAl合金<的組織與性能[J].有色金屬工程,2022,12(9):25-30.

    LI Xiaolei,YUAN Gang,ZHANG Kelun,et Al.Microstructure and properties of laser metAl depositedγ-TiAl Alloy[J].Nonferrous MetAls Engineering,2022,12(9):25-30.

    [5] 魏志祥,李國(guó)選,汪月勇,等.TIG電弧增材制造TC4鈦合金的組織與性能[J].有色金屬工程,2021,11(10):14-19,63.

    WEI Zhixiang,LI Guoxuan,WANG Yueyong,et Al.Microstructure and properties of TC4titanium Alloyproduced by TIG arc additive manufacturing[J].Nonferrous MetAls Engineering,2021,11(10):14-19,63.

    [6] YUE K,LIU J,ZHU S,et Al.Origins of differenttensile behaviors induced by cooling rate in a near Alphatitanium Alloy Ti65[J].MateriAlia,2018,1:128-138.

    [7] 吳汐玥,陳志勇,程超,等.熱處理對(duì)Ti65鈦合金板材的顯微組織、織構(gòu)及拉伸性能的影響[J].材料研究學(xué)報(bào),2019,33(10):785-793.

    WU Xiyue,CHEN Zhiyong,CHENG Chao,et Al.Effects of heat treatment on microstructure,textureand tensile properties of Ti65Alloy[J].Chinese JournA(yù)lof MateriAls Research,2019,33(10):785-793.

    [8] 謝洪志,劉廣鑫,彭皓云,等.Ti65鈦合金板材高溫力學(xué)性能及影響因素[J].兵器材料科學(xué)與工程,2022,45(2):26-29.

    XIE Hongzhi,LIU Guangxin,PENG Haoyun,et Al.High temperature mechanicAl properties andinfluencing factors of Ti65titanium Alloy sheet[J].Ordnance MateriAl Science and Engineering,2022,45(2):26-29.

    [9] 李曉丹,倪家強(qiáng),殷俊,等.激光沉積Ti65鈦合金的顯微組織與各向異性研究[J].中國(guó)激光,2023,50(8):209-216.

    LI Xiaodan,NI Jiaqiang,YIN Jun,et Al.Study onmicrostructure and anisotropy of laser deposited Ti65titanium Alloy[J].Chinese JournA(yù)l of Lasers,2023,50(8):209-216.

    [10]LI J,WANG H M,TANG H B,et Al.Effect of heattreatment on microstructure and mechanicAl propertiesof laser-deposited Ti65near-Alpha titanium Alloy[J].JournA(yù)l of MateriAls Research,2022,37(8):1464-1474.

    [11]沈淑馨,高旭,何蓓,等.顯微組織對(duì)激光增材制造航空發(fā)動(dòng)機(jī)用鈦合金室溫及中溫拉伸性能的影響[J].航空科學(xué)技術(shù),2022,33(9):66-76.

    SHEN Shuxin,GAO Xu,HE Bei,et Al.The effect ofmicrostructure on room and medium temperaturetensile properties of titanium Alloy fabricated by laseradditive manufacturing used in aeroengine[J].AeronauticAl Science &TecHNOlogy,2022,33(9):66-76.

    [12]PAGHANDEH M,ZAREI-HANZAKI A,ABEDI H R,et Al.On the warm temperature strain accomModationmechanisms of Ti-6Al-4VAlloy holding differentstarting microstructures[J].JournA(yù)l of MateriAlsResearch and TecHNOlogy,2021,14:496-506.

    [13]齊世文,榮鵬,黃丹,等.激光粉末床熔融增材制造鋁合金的室溫和高溫力學(xué)性能研究[J].中國(guó)激光,2022,49(8):7-17.

    QI Shiwen,RONG Peng,HUANG Dan,et Al.Room-and high-temperature mechanicAl properties ofAluminum Alloys fabricated using laser powder bedfusion additive manufacturing[J].Chinese JournA(yù)l ofLasers,2022,49(8):7-17.

    [14]刁威,杜磊,汪彥博,等.選區(qū)激光熔化Ti6Al4V合金的各向異性[J].材料研究學(xué)報(bào),2022,36(3):231-240.

    DIAO Wei,DU Lei,WANG Yanbo,et Al.Anisotropy ofTi6Al4VAlloy fabricated by selective laser melting[J].Chinese JournA(yù)l of MateriAls Research,2022,36(3):231-240.

    [15]周松,查濤,回麗,等.激光沉積修復(fù)TA15鈦合金斷裂韌度研究[J].稀有金屬材料與工程,2021,50(7):2528-2535.

    ZHOU Song,ZHA Tao,HUI Li,et Al.Fracturetoughness properties of laser deposited repaired TA15titanium Alloy[J].Rare MetAl MateriAls and Engineering,2021,50(7):2528-2535.

    [16]任宇航,劉佳蓬,楊光,等.激光沉積TA15鈦合金疲勞裂紋擴(kuò)展行為研究[J].應(yīng)用激光,2020,40(2):199-204.

    REN Yuhang,LIU Jiapeng,YANG Guang,et Al.Fatigue crack growth behavior of laser deposited TA15titanium Alloy[J].Applied Laser,2020,40(2):199-204.

    (注,原文標(biāo)題:激光沉積Ti65鈦合金拉伸性能)

    相關(guān)鏈接

    在線客服
    客服電話

    全國(guó)免費(fèi)服務(wù)熱線
    0917 - 3388692
    掃一掃

    bjliti.cn
    利泰金屬手機(jī)網(wǎng)

    返回頂部

    ↑

    主站蜘蛛池模板: 黑人猛挺进小莹的体内视频 | 亚洲久久婷婷| 18禁无码无遮挡在线播放| 少妇夜夜爽夜夜春夜夜高潮| 济源市| 影音先锋成人| 国产精品美女在线播放| 欧美人与动牲交免费观看网| 天天爱天天做天天爽| 昌平区| 爱3P| 国产午费午夜福利200集| 小泽玛利亚一区二区在线| 亚洲欧美日韩中文在线制服| 成人性生交大片免费看vr| 丁香五月天激情网| 免费国产自线拍一欧美视频| 色婷婷综合久久久久中文字幕| 久久精品手机观看| 啊av在线| 拍拍拍无遮挡高清视频在线小说| 欧美美女网18| 玩弄japan白嫩少妇hd小说| 久久黄色精品网站| 日韩免费av在线播放| 美女上床啪啪| 男女下面一进一出无遮挡| 久久国产劲爆∧v内射| 国产av一区二区三区| 成人内射国产免费观看| 东安县| 午夜在线网址| 久久久久国色αv免费观看| 精品无码久久久久久久久久| wwwwcom色是| 精品香蕉在线观看视频| 中文字幕乱人伦视频在线| 精品国产一区二区三区久久久狼| 日本乱码在线| 亚洲乱伦| av中文字幕不卡|